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1 Domains with Convex Closure

Saks and Yu (2005) proved that if D is convex then every monotone deterministic allocation

rule is implementable. We prove in this appendix the following generalization of their result:

Theorem 1 Every domain with a convex closure is a proper monotonicity domain.

1.1 Preparations

First we recall the definitions of monotonicity and cyclic monotonicity. An allocation rule f

is called monotone if

〈f(v)− f(w), v − w〉 ≥ 0 for every v, w ∈ D, (1)

and f is called cyclically monotone if for every k ≥ 2, for every k vectors in D (not necessarily

distinct), v1, v2, . . . , vk the following holds:

k∑
i=1

〈vi − vi+1, f(vi)〉 ≥ 0, (2)

where vk+1 is defined to be v1. By taking k = 2 in (2) it can be seen that every cyclically

monotone allocation rule is monotone.
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Let f : D → Z̄(A) be monotone and finite-valued, where D is an arbitrary set. Let

y1, . . . , ym ∈ RA be the distinct values of f . That is, for every v ∈ D there exists 1 ≤ j ≤ m

such that f(v) = yj, and every yj is attained at some valuation. If m > 1, for j 6= k define:

δ(j, k) = δD,f (j, k) = inf
v∈D,f(v)=yj

〈v, yj − yk〉. (3)

If w ∈ D satisfies f(w) = yk then by monotonicity, 〈v, yj − yk〉 ≥ 〈w, yj − yk〉. Therefore

δ(j, k) > −∞. Furthermore:

δ(j, k) ≥ sup
v∈D,f(v)=yk

〈v, yj − yk〉 = −δ(k, j).

Hence,

δ(j, k) + δ(k, j) ≥ 0, ∀j 6= k. (4)

As (2) can be written as
k∑

i=1

〈vi, f(vi)− f(vi−1)〉 ≥ 0, (5)

where v0 is defined to be vk, the following useful lemma has been noted by many authors

(see e.g. Heydenreich et al. (2007); Saks and Yu (2005)):

Lemma 2 Let f : D → Z̄(A) be finite-valued and monotone.

a. f is cyclically monotone if and only if for every sequence j1, j2, . . . , jk, k ≥ 2, such that

js 6= js+1 for 1 ≤ s < k the following holds:

k∑
i=1

δ(ji, ji+1) ≥ 0, (6)

where jk+1 is defined to be j1.

b. If in addition to the monotonicity δ(j, k) + δ(k, j) = 0 for every j 6= k, then f is

cyclically monotone if and only if the inequalities (6) are satisfied as equalities.

For every j let:

Dj = {v ∈ D| 〈v, yj − yk〉 ≥ δ(j, k) ∀k, k 6= j}.

Obviously, f(v) = yj implies v ∈ Dj. Hence, D = ∪m
j=1Dj.

The following sufficient condition will be useful:

Lemma 3 Let f : D → Z̄(A) be finite-valued and monotone. If ∩m
j=1Dj 6= ∅ then f is

cyclically monotone.
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Proof: Let v ∈ D be in the intersection. Hence 〈v, yj − yk〉 ≥ δ(j, k) for all j 6= k. We

claim that

〈v, yj − yk〉 = δ(j, k) for all j 6= k. (7)

Indeed, v ∈ Dj implies 〈v, yj − yk〉 ≥ δ(j, k), and v ∈ Dk implies 〈v, yk − yj〉 ≥ δ(k, j).

Therefore, from (4) we obtain (7) . By plugging (7) in (6) it follows that (6) is satisfied with

equality for every sequence of indices, and hence f is cyclically monotone.�

We next show that in order to prove that a set is a proper monotonicity domain it suffices

to prove that its closure is a proper monotonicity domain. For a domain D we denote its

closure by cl(D).

Lemma 4 If cl(D) is a proper monotonicity domain so is D.

Proof: Suppose cl(D) is a proper monotonicity domain, and let f : D → Z̄(A) be a

finite-valued monotone function on D. Extend f to cl(D) as follows: For every v ∈ cl(D)\D
there exists a sequence vn, n ≥ 1 in D such that vn → v. For some j there exists an infinite

numbers of indices n such that f(vn) = yj. Hence for every v ∈ cl(D) \D there exists j and

a sequence vn ∈ D such that vn → v and f(vn) = yj for every n ≥ 1. Let f(v) = yj for such

arbitrary j. It is easily verified that the extension of f is monotone on cl(D). Therefore it

is cyclically monotone on cl(D), and therefore f is cyclically monotone on D.�

We will use a characterization of cyclically monotone functions that can easily be derived

from Section 24 in Rockafellar (1970).

Theorem 5 (Rockafellar) Let D ⊆ RA be a convex and non-empty subset of valuations,

and let f : D → Z̄(A).

a. f is cyclically monotone on D if and only if there exists a real-valued function U on

D such that1

U(v2)− U(v1) ≥ 〈f(v1), v2 − v1〉, ∀v1, v2 ∈ D. (8)

b. If each of the functions U1, U2 : D → R satisfies (8), then the functions differ by a

constant. That is, there exists a real number α such that

U1(v) = U2(v) + α ∀v ∈ D. (9)

c. Suppose that U : D → R satisfies (8), and let v1 6= v2 ∈ D. Then, the real-valued

function

φ(t) = 〈f(v1 + t(v2 − v1)), v2 − v1〉 (10)

1U(v) can be interpreted as the utility function of the agent when her valuation is v.
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defined for every t ∈ [0, 1] is non-decreasing, and:

U(v2)− U(v1) =

∫ 1

0

φ(t)dt, (11)

where the integral is computed in the sense of Riemann.2

The main tool in proving Theorem 1 is the following:

Theorem 6 Let D = H1 ∪ H2 be a closed convex set, where each Hi is closed convex and

non-empty. Let f : D → Z̄(A) be monotone (not necessary finite-valued). If f is cyclically

monotone on every Hi then f is cyclically monotone on D.

Proof: Because D and the sets Hi are closed, H1 ∩H2 6= ∅. Let v∗ be a fixed valuation in

H1 ∩H2. By Part a of Theorem 5, there exists U1 on H1 that satisfies (8) on H1. By adding

a constant, we can choose U1 such that U1(v
∗) = 0. Similarly there exists U2 : H2 → R that

satisfies (8) on H2 and U2(v
∗) = 0 . By Part b of Theorem 5, U1 = U2 on H1 ∩H2. Hence

we can define a function U on D by U(v) = Ui(v) for v ∈ Hi. In order to show that f is

cyclically monotone on D, it suffices by Part a to show that (8) is satisfied by U on D. Let

then v1 6= v2 in D. Obviously we can consider only the case v1 ∈ H1 \ H2, v2 ∈ H2 \ H1 .

Because H1, H2 and D are closed and v1 ∈ H1 \H2 and v2 ∈ H2 \H1, the interval (v1, v2)

intersects H1 ∩H2, say w = v1 + s(v2 − v1), 0 < s < 1 is a valuation at the intersection. By

applying Part c of Theorem 5 to v1, w in H1, and by a simple change of variables we get:

U(w)− U(v1) =

∫ s

0

〈f(v1 + t(v2 − v1)), v2 − v1〉dt,

and similarly

U(v2)− U(w) =

∫ 1

s

〈f(v1 + t(v2 − v1)), v2 − v1〉dt.

Therefore:

U(v2)− U(v1) =

∫ 1

0

〈f(v1 + t(v2 − v1)), v2 − v1〉dt.

By the monotonicity of f , the integrand is non-decreasing in t, and therefore the integral is

greater or equals the value of the integrand at t = 0. Hence,

U(v2)− U(v1) ≥ 〈f(v1), v2 − v1〉.�
2A non decreasing function is Riemann integrable. It is also Borel measurable and therefore its Riemann

integral equals its Lebesgue integral.
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1.2 Proof of Theorem 1:

We first show that it suffices to prove that every compact convex set is a proper monotonicity

domain. Let D be a set such that cl(D) is convex. By Lemma 4 it suffices to prove that

cl(D) is a proper monotonicity domain.

Assume the result holds for every compact convex set, and assume in negation that

f : cl(D) → Z̄(A) is a finite-valued monotone randomized allocation rule, which is not

cyclically monotone. Therefore there exist v1, v2, · · · , vk in cl(D) that contradict (2). Let K

be the convex hull of these valuations, then f is finite-valued and monotone on K and it is

not cyclically monotone, contradicting our assumption that the assertion holds for compact

convex sets.

We prove the theorem for compact convex sets by a double induction process. The first

induction is on the number of distinct values, m(D, f) of f on D. If m(D, f) = 1 then

obviously f is cyclically monotone. Let m > 1, and assume we have already proven that

for every compact convex D and for every monotone randomized allocation rule f : D →
Z̄(A) with m(f,D) < m, f is cyclically monotone on D. We proceed to prove it for every

m(D, f) = m.

For every (D, f) with f(D) = {y1, · · · ym} let r(D, f) be the maximal number r, 1 ≤ r ≤
m for which for every set F of r distinct values in {1, . . . ,m}, the intersection ∩j∈FDj 6= ∅.
We prove our result by induction on r(D, f). Let then r(D, f) = 1. Since m > 1 there exists

j 6= k such that Dj ∩ Dk = ∅. Since Dj and Dk are compact and convex we can strongly

separate them. That is, there exists 0 6= y ∈ RA and α ∈ R such that

〈v, y〉 < α < 〈w, y〉 ∀v ∈ Dj,∀w ∈ Dk.

Denote H1 = {v ∈ D|〈v, y〉 ≤ α}, H2 = {v ∈ D|〈v, y〉 ≥ α}. On each Hi the function f

takes at most m − 1 values, and therefore by the first induction hypothesis f is cyclically

monotone on each Hi. By Theorem 6 f is cyclically monotone on D. Suppose the theorem

is proved for 1, . . . , r − 1, 2 ≤ r ≤ m. We now prove it for r(D, f) = r. If r = m the result

follows from Lemma 3. If r < m there exists a set of indices of cardinality r + 1, which

w.l.o.g. we take to be {1, . . . , r + 1}, such that ∩r
j=1Dj 6= ∅, and ∩r+1

j=1Dj = ∅. The convex

compact sets ∩r
j=1Dj and Dr+1 must be strongly separated. That is, there exists 0 6= y ∈ RA

and α ∈ R such that

〈v, y〉 < α < 〈w, y〉 ∀v ∈ ∩r
j=1Dj,∀w ∈ Dr+1.

Let H1 = {v ∈ D|〈v, y〉 ≤ α}, H2 = {v ∈ D|〈v, y〉 ≥ α}. On H1 the function f does not

take the value yr+1 and therefore by our first induction hypothesis f is cyclically monotone.

On H2, if m(H2, f) < m then f is implementable on H2 by the first induction hypothesis.
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Suppose m(H2, f) = m. Since H2 ⊆ D, δH2,f (j, k) ≥ δD,f (j, k) for every j 6= k. Therefore,

for every j, H2j
⊆ Dj, where H2j

= {v ∈ H2| 〈v, yj − yk〉 ≥ δH2,f (j, k)}. Hence, ∩r
j=1H2j

⊆
H2 ∩ (∩r

j=1Dj) = ∅ implying r(H2, f) < r. Therefore by our second induction hypothesis f

is cyclically monotone on H2. Hence f is cyclically monotone on D by Theorem 6.�

1.3 A Note on General Monotone Allocation Rules

The definitions of monotonicity and cyclic monotonicity are not restricted to functions that

take only sub-probability values. Hence, every function, f : D → RA, that satisfies (1) ((2))

is called monotone (cyclically monotone). Such general functions can be used, e.g., in models

with divisible goods. It is therefore interesting to note that without any change in the proofs

Theorem 1 holds for such functions. Therefore the following result holds:

Theorem 7 Let D ⊆ RA be a domain with a convex closure. Every finite-valued monotone

function f : D → RA is cyclically monotone.
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