Supplementary Material for Monotonicity and Implementability

Itai Ashlagi* Mark Braverman ${ }^{\dagger} \quad$ Avinatan Hassidim ${ }^{\ddagger}$
Dov Monderer ${ }^{\S}$

1 Domains with Convex Closure

Saks and $\mathrm{Yu}(2005)$ proved that if D is convex then every monotone deterministic allocation rule is implementable. We prove in this appendix the following generalization of their result:

Theorem 1 Every domain with a convex closure is a proper monotonicity domain.

1.1 Preparations

First we recall the definitions of monotonicity and cyclic monotonicity. An allocation rule f is called monotone if

$$
\begin{equation*}
\langle f(v)-f(w), v-w\rangle \geq 0 \quad \text { for every } v, w \in D \tag{1}
\end{equation*}
$$

and f is called cyclically monotone if for every $k \geq 2$, for every k vectors in D (not necessarily distinct), $v_{1}, v_{2}, \ldots, v_{k}$ the following holds:

$$
\begin{equation*}
\sum_{i=1}^{k}\left\langle v_{i}-v_{i+1}, f\left(v_{i}\right)\right\rangle \geq 0 \tag{2}
\end{equation*}
$$

where v_{k+1} is defined to be v_{1}. By taking $k=2$ in (2) it can be seen that every cyclically monotone allocation rule is monotone.

[^0]Let $f: D \rightarrow \bar{Z}(A)$ be monotone and finite-valued, where D is an arbitrary set. Let $y^{1}, \ldots, y^{m} \in R^{A}$ be the distinct values of f. That is, for every $v \in D$ there exists $1 \leq j \leq m$ such that $f(v)=y^{j}$, and every y^{j} is attained at some valuation. If $m>1$, for $j \neq k$ define:

$$
\begin{equation*}
\delta(j, k)=\delta_{D, f}(j, k)=\inf _{v \in D, f(v)=y^{j}}\left\langle v, y^{j}-y^{k}\right\rangle . \tag{3}
\end{equation*}
$$

If $w \in D$ satisfies $f(w)=y^{k}$ then by monotonicity, $\left\langle v, y^{j}-y^{k}\right\rangle \geq\left\langle w, y^{j}-y^{k}\right\rangle$. Therefore $\delta(j, k)>-\infty$. Furthermore:

$$
\delta(j, k) \geq \sup _{v \in D, f(v)=y^{k}}\left\langle v, y^{j}-y^{k}\right\rangle=-\delta(k, j) .
$$

Hence,

$$
\begin{equation*}
\delta(j, k)+\delta(k, j) \geq 0, \quad \forall j \neq k \tag{4}
\end{equation*}
$$

As (2) can be written as

$$
\begin{equation*}
\sum_{i=1}^{k}\left\langle v_{i}, f\left(v_{i}\right)-f\left(v_{i-1}\right)\right\rangle \geq 0 \tag{5}
\end{equation*}
$$

where v_{0} is defined to be v_{k}, the following useful lemma has been noted by many authors (see e.g. Heydenreich et al. (2007); Saks and Yu (2005)):

Lemma 2 Let $f: D \rightarrow \bar{Z}(A)$ be finite-valued and monotone.
a. f is cyclically monotone if and only if for every sequence $j_{1}, j_{2}, \ldots, j_{k}, k \geq 2$, such that $j_{s} \neq j_{s+1}$ for $1 \leq s<k$ the following holds:

$$
\begin{equation*}
\sum_{i=1}^{k} \delta\left(j_{i}, j_{i+1}\right) \geq 0 \tag{6}
\end{equation*}
$$

where j_{k+1} is defined to be j_{1}.
b. If in addition to the monotonicity $\delta(j, k)+\delta(k, j)=0$ for every $j \neq k$, then f is cyclically monotone if and only if the inequalities (6) are satisfied as equalities.

For every j let:

$$
D_{j}=\left\{v \in D \mid\left\langle v, y^{j}-y^{k}\right\rangle \geq \delta(j, k) \quad \forall k, k \neq j\right\} .
$$

Obviously, $f(v)=y^{j}$ implies $v \in D_{j}$. Hence, $D=\cup_{j=1}^{m} D_{j}$.
The following sufficient condition will be useful:
Lemma 3 Let $f: D \rightarrow \bar{Z}(A)$ be finite-valued and monotone. If $\cap_{j=1}^{m} D_{j} \neq \emptyset$ then f is cyclically monotone.

Proof: Let $v \in D$ be in the intersection. Hence $\left\langle v, y^{j}-y^{k}\right\rangle \geq \delta(j, k)$ for all $j \neq k$. We claim that

$$
\begin{equation*}
\left\langle v, y^{j}-y^{k}\right\rangle=\delta(j, k) \quad \text { for all } j \neq k \tag{7}
\end{equation*}
$$

Indeed, $v \in D_{j}$ implies $\left\langle v, y^{j}-y^{k}\right\rangle \geq \delta(j, k)$, and $v \in D_{k}$ implies $\left\langle v, y^{k}-y^{j}\right\rangle \geq \delta(k, j)$. Therefore, from (4) we obtain (7) . By plugging (7) in (6) it follows that (6) is satisfied with equality for every sequence of indices, and hence f is cyclically monotone.

We next show that in order to prove that a set is a proper monotonicity domain it suffices to prove that its closure is a proper monotonicity domain. For a domain D we denote its closure by $\operatorname{cl}(D)$.

Lemma 4 If $\operatorname{cl}(D)$ is a proper monotonicity domain so is D.
Proof: Suppose $c l(D)$ is a proper monotonicity domain, and let $f: D \rightarrow \bar{Z}(A)$ be a finite-valued monotone function on D. Extend f to $c l(D)$ as follows: For every $v \in c l(D) \backslash D$ there exists a sequence $v_{n}, n \geq 1$ in D such that $v_{n} \rightarrow v$. For some j there exists an infinite numbers of indices n such that $f\left(v_{n}\right)=y^{j}$. Hence for every $v \in \operatorname{cl}(D) \backslash D$ there exists j and a sequence $v_{n} \in D$ such that $v_{n} \rightarrow v$ and $f\left(v_{n}\right)=y^{j}$ for every $n \geq 1$. Let $f(v)=y^{j}$ for such arbitrary j. It is easily verified that the extension of f is monotone on $\operatorname{cl}(D)$. Therefore it is cyclically monotone on $\operatorname{cl}(D)$, and therefore f is cyclically monotone on D.

We will use a characterization of cyclically monotone functions that can easily be derived from Section 24 in Rockafellar (1970).

Theorem 5 (Rockafellar) Let $D \subseteq R^{A}$ be a convex and non-empty subset of valuations, and let $f: D \rightarrow \bar{Z}(A)$.
a. f is cyclically monotone on D if and only if there exists a real-valued function U on D such that ${ }^{1}$

$$
\begin{equation*}
U\left(v_{2}\right)-U\left(v_{1}\right) \geq\left\langle f\left(v_{1}\right), v_{2}-v_{1}\right\rangle, \quad \forall v_{1}, v_{2} \in D \tag{8}
\end{equation*}
$$

b. If each of the functions $U_{1}, U_{2}: D \rightarrow R$ satisfies (8), then the functions differ by a constant. That is, there exists a real number α such that

$$
\begin{equation*}
U_{1}(v)=U_{2}(v)+\alpha \quad \forall v \in D \tag{9}
\end{equation*}
$$

c. Suppose that $U: D \rightarrow R$ satisfies (8), and let $v_{1} \neq v_{2} \in D$. Then, the real-valued function

$$
\begin{equation*}
\phi(t)=\left\langle f\left(v_{1}+t\left(v_{2}-v_{1}\right)\right), v_{2}-v_{1}\right\rangle \tag{10}
\end{equation*}
$$

[^1]defined for every $t \in[0,1]$ is non-decreasing, and:
\[

$$
\begin{equation*}
U\left(v_{2}\right)-U\left(v_{1}\right)=\int_{0}^{1} \phi(t) d t \tag{11}
\end{equation*}
$$

\]

where the integral is computed in the sense of Riemann. ${ }^{2}$

The main tool in proving Theorem 1 is the following:
Theorem 6 Let $D=H_{1} \cup H_{2}$ be a closed convex set, where each H_{i} is closed convex and non-empty. Let $f: D \rightarrow \bar{Z}(A)$ be monotone (not necessary finite-valued). If f is cyclically monotone on every H_{i} then f is cyclically monotone on D.

Proof: Because D and the sets H_{i} are closed, $H_{1} \cap H_{2} \neq \emptyset$. Let v^{*} be a fixed valuation in $H_{1} \cap H_{2}$. By Part a of Theorem 5, there exists U_{1} on H_{1} that satisfies (8) on H_{1}. By adding a constant, we can choose U_{1} such that $U_{1}\left(v^{*}\right)=0$. Similarly there exists $U_{2}: H_{2} \rightarrow R$ that satisfies (8) on H_{2} and $U_{2}\left(v^{*}\right)=0$. By Part b of Theorem 5, $U_{1}=U_{2}$ on $H_{1} \cap H_{2}$. Hence we can define a function U on D by $U(v)=U_{i}(v)$ for $v \in H_{i}$. In order to show that f is cyclically monotone on D, it suffices by Part a to show that (8) is satisfied by U on D. Let then $v_{1} \neq v_{2}$ in D. Obviously we can consider only the case $v_{1} \in H_{1} \backslash H_{2}, v_{2} \in H_{2} \backslash H_{1}$. Because H_{1}, H_{2} and D are closed and $v_{1} \in H_{1} \backslash H_{2}$ and $v_{2} \in H_{2} \backslash H_{1}$, the interval $\left(v_{1}, v_{2}\right)$ intersects $H_{1} \cap H_{2}$, say $w=v_{1}+s\left(v_{2}-v_{1}\right), 0<s<1$ is a valuation at the intersection. By applying Part c of Theorem 5 to v_{1}, w in H_{1}, and by a simple change of variables we get:

$$
U(w)-U\left(v_{1}\right)=\int_{0}^{s}\left\langle f\left(v_{1}+t\left(v_{2}-v_{1}\right)\right), v_{2}-v_{1}\right\rangle d t
$$

and similarly

$$
U\left(v_{2}\right)-U(w)=\int_{s}^{1}\left\langle f\left(v_{1}+t\left(v_{2}-v_{1}\right)\right), v_{2}-v_{1}\right\rangle d t
$$

Therefore:

$$
U\left(v_{2}\right)-U\left(v_{1}\right)=\int_{0}^{1}\left\langle f\left(v_{1}+t\left(v_{2}-v_{1}\right)\right), v_{2}-v_{1}\right\rangle d t
$$

By the monotonicity of f, the integrand is non-decreasing in t, and therefore the integral is greater or equals the value of the integrand at $t=0$. Hence,

$$
U\left(v_{2}\right)-U\left(v_{1}\right) \geq\left\langle f\left(v_{1}\right), v_{2}-v_{1}\right\rangle
$$

[^2]
1.2 Proof of Theorem 1:

We first show that it suffices to prove that every compact convex set is a proper monotonicity domain. Let D be a set such that $c l(D)$ is convex. By Lemma 4 it suffices to prove that $c l(D)$ is a proper monotonicity domain.

Assume the result holds for every compact convex set, and assume in negation that $f: \operatorname{cl}(D) \rightarrow \bar{Z}(A)$ is a finite-valued monotone randomized allocation rule, which is not cyclically monotone. Therefore there exist $v_{1}, v_{2}, \cdots, v_{k}$ in $c l(D)$ that contradict (2). Let K be the convex hull of these valuations, then f is finite-valued and monotone on K and it is not cyclically monotone, contradicting our assumption that the assertion holds for compact convex sets.

We prove the theorem for compact convex sets by a double induction process. The first induction is on the number of distinct values, $m(D, f)$ of f on D. If $m(D, f)=1$ then obviously f is cyclically monotone. Let $m>1$, and assume we have already proven that for every compact convex D and for every monotone randomized allocation rule $f: D \rightarrow$ $\bar{Z}(A)$ with $m(f, D)<m, f$ is cyclically monotone on D. We proceed to prove it for every $m(D, f)=m$.

For every (D, f) with $f(D)=\left\{y^{1}, \cdots y^{m}\right\}$ let $r(D, f)$ be the maximal number $r, 1 \leq r \leq$ m for which for every set F of r distinct values in $\{1, \ldots, m\}$, the intersection $\cap_{j \in F} D_{j} \neq \emptyset$. We prove our result by induction on $r(D, f)$. Let then $r(D, f)=1$. Since $m>1$ there exists $j \neq k$ such that $D_{j} \cap D_{k}=\emptyset$. Since D_{j} and D_{k} are compact and convex we can strongly separate them. That is, there exists $0 \neq y \in R^{A}$ and $\alpha \in R$ such that

$$
\langle v, y\rangle<\alpha<\langle w, y\rangle \quad \forall v \in D_{j}, \forall w \in D_{k}
$$

Denote $H_{1}=\{v \in D \mid\langle v, y\rangle \leq \alpha\}, H_{2}=\{v \in D \mid\langle v, y\rangle \geq \alpha\}$. On each H_{i} the function f takes at most $m-1$ values, and therefore by the first induction hypothesis f is cyclically monotone on each H_{i}. By Theorem $6 f$ is cyclically monotone on D. Suppose the theorem is proved for $1, \ldots, r-1,2 \leq r \leq m$. We now prove it for $r(D, f)=r$. If $r=m$ the result follows from Lemma 3. If $r<m$ there exists a set of indices of cardinality $r+1$, which w.l.o.g. we take to be $\{1, \ldots, r+1\}$, such that $\cap_{j=1}^{r} D_{j} \neq \emptyset$, and $\cap_{j=1}^{r+1} D_{j}=\emptyset$. The convex compact sets $\cap_{j=1}^{r} D_{j}$ and D_{r+1} must be strongly separated. That is, there exists $0 \neq y \in R^{A}$ and $\alpha \in R$ such that

$$
\langle v, y\rangle<\alpha<\langle w, y\rangle \quad \forall v \in \cap_{j=1}^{r} D_{j}, \forall w \in D_{r+1} .
$$

Let $H_{1}=\{v \in D \mid\langle v, y\rangle \leq \alpha\}, H_{2}=\{v \in D \mid\langle v, y\rangle \geq \alpha\}$. On H_{1} the function f does not take the value y^{r+1} and therefore by our first induction hypothesis f is cyclically monotone. On H_{2}, if $m\left(H_{2}, f\right)<m$ then f is implementable on H_{2} by the first induction hypothesis.

Suppose $m\left(H_{2}, f\right)=m$. Since $H_{2} \subseteq D, \delta_{H_{2}, f}(j, k) \geq \delta_{D, f}(j, k)$ for every $j \neq k$. Therefore, for every $j, H_{2_{j}} \subseteq D_{j}$, where $H_{2_{j}}=\left\{v \in H_{2} \mid\left\langle v, y^{j}-y^{k}\right\rangle \geq \delta_{H_{2}, f}(j, k)\right\}$. Hence, $\cap_{j=1}^{r} H_{2_{j}} \subseteq$ $H_{2} \cap\left(\cap_{j=1}^{r} D_{j}\right)=\emptyset$ implying $r\left(H_{2}, f\right)<r$. Therefore by our second induction hypothesis f is cyclically monotone on H_{2}. Hence f is cyclically monotone on D by Theorem 6.

1.3 A Note on General Monotone Allocation Rules

The definitions of monotonicity and cyclic monotonicity are not restricted to functions that take only sub-probability values. Hence, every function, $f: D \rightarrow R^{A}$, that satisfies (1) ((2)) is called monotone (cyclically monotone). Such general functions can be used, e.g., in models with divisible goods. It is therefore interesting to note that without any change in the proofs Theorem 1 holds for such functions. Therefore the following result holds:

Theorem 7 Let $D \subseteq R^{A}$ be a domain with a convex closure. Every finite-valued monotone function $f: D \rightarrow R^{A}$ is cyclically monotone.

References

B. Heydenreich, R. Müller, M. Uetz, and R. Vohra. On revenue equivalence in truthful mechanisms. In Computational Social Systems and the Internet, Dagstuhl Seminar Proceedings, 2007.
R.T. Rockafellar. Convex analysis. Princeton Univ. Press, 1970.
M. E. Saks and L. Yu. Weak monotonicity suffices for truthfulness on convex domains. In Proceedings of the 6th ACM conference on Electronic commerce, pages 286-293, 2005.

[^0]: *Harvard Business School.
 ${ }^{\dagger}$ Microsoft Research, New England.
 \ddagger MIT.
 §Technion-Israel Institute of Technology.

[^1]: ${ }^{1} U(v)$ can be interpreted as the utility function of the agent when her valuation is v.

[^2]: ${ }^{2} \mathrm{~A}$ non decreasing function is Riemann integrable. It is also Borel measurable and therefore its Riemann integral equals its Lebesgue integral.

