
Monotonicity and Implementability∗

Itai Ashlagi† Mark Braverman‡ Avinatan Hassidim§

Dov Monderer¶

Abstract

Consider an environment with a finite number of alternatives, and agents with
private values and quasi-linear utility functions. A domain of valuation functions for an
agent is a monotonicity domain if every finite-valued monotone randomized allocation
rule defined on it is implementable in dominant strategies. We fully characterize the
set of all monotonicity domains.

1 Introduction

We consider an environment with a finite set of alternatives A, and agents with private values

and quasi-linear preferences. We focus on direct revelation mechanisms, which consist of an

allocation rule and a payment function. The allocation rule maps each profile of valuations

to a probability vector over the set of alternatives.1 Our interest is in allocation rules

that are implementable in dominant strategies. For brevity such rules will be called just

implementable.

Monotonicity is a necessary but not sufficient condition for an allocation rule to be imple-

mentable.2 Rochet (1987) (see also (Rockafellar, 1970)) showed that a condition called cyclic

monotonicity is both necessary and sufficient for any allocation rule to be implementable.

∗We thank André Berger, Shahar Dobzinski, Ron Lavi, Rudolf Müller, Seyyed Hossein Naeemi, and Maria
Polukarov for very helpful discussions. We also thank Jacob Leshno, Scott Kominers and two anonymous
referees for useful comments. Dov Monderer thanks the Israeli Science Foundation (ISF), and the Fund
for the Promotion of Research at the Technion. Itai Ashlagi and Avinatan Hassidim were consulting for
Microsoft Research New England during this project.
†Harvard Business School.
‡Microsoft Research, New England.
§MIT.
¶Technion-Israel Institute of Technology.
1What is called here an allocation rule is often called a randomized allocation rule.
2An example of a monotone allocation rule which is not implementable is given by Saks and Yu (2005).
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Cyclic monotonicity however is a considerably more difficult condition to work with than

monotonicity; roughly, monotonicity is a condition on every pair of values, whereas cyclic

monotonicity is a condition on every finite sequence of values.34 Therefore, studying in

which domains monotonicity is also sufficient for implementing an arbitrary allocation rule

is a desired task. Myerson (1981) showed that in a single dimension domain, monotonicity

is sufficient for any allocation rule to be implementable.5 Bikhchandani et al. (2006) proved

that in many convex domains, most notably RA
+, every monotone deterministic allocation

rule6 is implementable. Gui et al. (2004) noticed that by a theorem by Roberts (1979), this

result holds for the unrestricted domain D = RA, and they proved in addition that it holds

for every cube. Finally, Saks and Yu (2005) extended this result for any convex domain.7

In this paper we characterize domains for which every finite-valued (finite range) mono-

tone allocation rule is implementable. Such domains are called monotonicity domains. We

begin with characterizing proper monotonicity domains, which are defined similarly to mono-

tonicity domains, only allocation rules can output also sub-probability vectors (rather than

just probability vectors).8 Using the characterization of proper monotonicity domains we are

able to characterize monotonicity domains. Our results do not rule out the possibility that

a particular monotone allocation rule can be implementable in a non monotonicity domain.

It can be shown that every domain with a convex closure is a proper monotonicity

domain. One way to see this is to extend the result of Saks and Yu (2005) to finite-valued

allocation rules which also output sub-probability vectors, and to domains with a convex

closure (instead of just convex domains). Deriving these extensions requires some effort, and

the supplementary material gives an alternative simpler proof. Our main result is the other

direction: if the closure of a domain with dimension at least 2 is not convex, there exists a

finite-valued monotone allocation rule, which possibly outputs sub-probability vectors, that

is not implementable. The usefulness of this part is that it helps identifies some domains as

not being (proper) monotonicity domains. One such domain is the class of gross substitutes

preferences.

Both the finite-valued and randomized properties of the allocation rules are necessary;

3For a good background on monotonicity and cyclic monotonicity see (Bikhchandani et al., 2006) and
(Vohra, 2007). See also (Jehiel and Moldovanu, 2001), (Jehiel et al., 1996), (Krishna and Maenner, 2001)
for characterizations of Bayesian incentive compatible mechanisms.

4See (Lavi and Swamy, 2009) who presented a mechanism in a scheduling setting and showed that the
cyclic monotonicity holds in order to prove that their mechanism is implementable.

5Following Myerson (1981) other authors used the monotonicity condition to prove that their suggested
allocation rules are implementable (in single dimensional domains). See e.g. (Goldberg et al., 2006) and
(Lehmann et al., 2002).

6A deterministic allocation rule always assign probability 1 to some alternative.
7Berger et al. (2009) extended Saks and Yu’s result to convex valuation functions.
8Note that every proper monotonicity domain is also a monotonicity domain.
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Indeed, Archer and Kleinberg (2008) and Bikhchandani et al. (2006) each give an example for

a monotone allocation rule on a convex domain, with infinitely many outcomes which is not

cyclically monotone. Moreover, both Vohra (2010) and Mualem and Schapira (2008) exhibit

examples of multi-dimensional non-convex domains in which every deterministic monotone

allocation rule is implementable.

Knowing that a domain D is a monotonicity domain can serve as a useful tool in other

mechanism design problems. For example, one can use this to find a revenue-optimal domi-

nant strategy incentive compatible mechanism on D. Indeed, proving in the Bayesian setup

that every monotone allocation rule is implementable was a key result in finding an optimal

single-item auction in (Myerson, 1981). In monotonicity domains it is also easier to deal

with the important task of finding concrete characterizations of implementable allocation

rules, as the one appearing in Roberts (1979), where it was proved that every implementable

deterministic allocation rule is an affine maximizer. Roberts proved the theorem using a

condition (positive association of differences), which is very similar in spirit to monotonicity

(see Bikhchandani et al. (2006); Lavi et al. (2003) for details).

Recently, researchers in the area of algorithmic mechanism design have been discussing

efficiency bounds: Let g be a desired social choice function and f an allocation rule. They

are interested in how bad (upper bounds) and how good (lower bounds) can the difference

between g and f be (can be measured in various ways), when one insists that f is imple-

mentable. Such problems have been extensively analyzed in the computer science literature

(see e.g. (Nisan and Ronen, 2001; Archer and Tardos, 2007; Lavi and Swamy, 2007)). Again,

knowing that the domain is a monotonicity domain can be useful in analyzing these bounds.

In the next section we present the model and our results. In Section 3 we show that if

a domain does not have a convex closure than there exists a finite-valued monotone alloca-

tion rule which is not implementable. In other words we complete the characterization of

proper monotonicity domains. In Section 4 we characterize monotonicity domains using the

characterization of proper monotonicity domains.

2 Model And Results

We restrict our attention to a model with a single agent. This is without loss of generality as

all relevant definitions can be interpreted by holding all other agents’ types fixed. Let A be

a finite set of alternatives. Let RA be the set of all possible valuation functions on A, that is

the set of all real valued functions defined on A. The value of a for an agent with valuation

v is thus va. It is convenient to represent each alternative a by its associated unit vector

ea ∈ RA, where eaa = 1 and eab = 0 for every b 6= a. Let Z(A) be the set of all probability
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vectors z ∈ RA:

Z(A) = {z ∈ RA| za ≥ 0 ∀a,
∑
a∈A

za = 1}.

Let D ⊆ RA, and let f : D → Z(A). We think of D as the set of all possible valuations

of a given agent with a quasi-linear utility function, and f is interpreted as an allocation

rule. If f(v) ∈ {ea|a ∈ A} for every v ∈ V then f is called a deterministic allocation rule.

If an agent with valuation v declares w, alternative a is chosen with probability fa(w), and

therefore she evaluates f(w) by the inner product 〈v, f(w)〉 =
∑

a∈A vafa(w). An allocation

rule f is finite-valued if its range {f(v)|v ∈ D} is a finite set.

We say that an allocation rule f is implementable in dominant strategies (or just imple-

mentable) if there exists a payment function c : D → R such that

〈v, f(v)〉 − c(v) ≥ 〈v, f(w)〉 − c(w) ∀v, w ∈ D. (1)

Inequality (1) implies that given the payment function c, the agent is better off reporting v

over w when her value is v. Writing the same inequality while reversing the order of v and

w, and summing with (1), one obtains that:

〈f(v)− f(w), v − w〉 ≥ 0 for every v, w ∈ D. (2)

An allocation rule satisfying (2) is called monotone.

It was observed by Rochet (1987) that every implementable allocation rule f satisfies a

stronger monotonicity property. f is called cyclically monotone if for every k ≥ 2 and for

every k vectors in D (not necessarily distinct), v1, v2, . . . , vk the following holds:

k∑
i=1

〈vi − vi+1, f(vi)〉 ≥ 0, (3)

where vk+1 is defined to be v1. By taking k = 2 in (3) it can be seen that every cyclically

monotone allocation rule is monotone. The following characterization of implementability

was proved by Rochet (1987):

Theorem 1 (Rochet) An allocation rule is implementable if and only if it is cyclically

monotone.

We say that a domain of valuation functions is a monotonicity domain if every finite-

valued monotone allocation rule defined on it is implementable. It is well known that every

domain of dimension at most one is a monotonicity domain (Myerson, 1981).

To characterize monotonicity domains we need to consider an equivalent definition which

relaxes the allocation rule to output also sub-probability vectors. Formally, Let Z̄(A) be the
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set of all sub-probability vectors z ∈ RA:

Z̄(A) = {z ∈ RA| za ≥ 0 ∀a,
∑
a∈A

za ≤ 1}.

We say that a domain of valuation functions is a proper monotonicity domain if every finite-

valued monotone function f : D → Z̄(A) is implementable.9 To avoid confusion, only

functions that always output probability vectors will be called allocation rules.

An important step in characterizing monotonicity domains is due to Saks and Yu (2005):

Theorem 2 (Saks and Yu) Every deterministic allocation rule on a convex domain is im-

plementable.

In the supplementary material we give an alternative simpler proof. Our proof holds under

weaker assumptions, only requiring the domain to have a convex closure, and the allocation

rule to be finite-valued. Furthermore, we allow the allocation rule to output sub-probability

vectors. In other words it is shown that every domain with a convex closure is a proper

monotonicity domain. Other proofs and extensions can be found in (Archer and Kleinberg,

2008) and (Vohra, 2007).

In our main result we complete the characterization of proper monotonicity domains:

Theorem 3 If a domain with dimension at least 2 does not have a convex closure then there

exists a monotone finite-valued function f : D → Z̄(A) which is not implementable.

Finally, we use the characterization for proper monotonicity domains to characterize

monotonicity domains:

Theorem 11 A domain D is a monotonicity domain if and only if its projection to the

hyperplane HA = {v ∈ RA :
∑

a∈A va = 0} is a proper monotonicity domain.10

3 Domains with a Non-Convex Closure

For every domain D, let MD be the linear space generated by all differences v − w, where

v, w ∈ D. The dimension d(D) of D is defined to be the linear dimension of MD. It is

well-known that D is 0-dimensional if and only if D is a singleton. Let k ≥ 1. It is also well-

known that d(D) ≥ k if and only if there exist k + 1 distinct valuations in D, v0, v1, . . . , vk,

such that v1 − v0, v2 − v0, . . . , vk − v0 are linearly independent. In this section we prove:

9Defining implementability, monotonicity and cyclic monotonicity is similar for functions of the form
f : D → Z̄. Moreover, Rochet’s theorem holds for such functions.

10Intuitively, valuations that project onto the same point in HA reflect identical preferences under proba-
bility distributions. Thus there is a natural connection between allocation rules on D and arbitrary functions
on the projection of D to HA.
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Theorem 3 If the closure of a domain of dimension at least 2 is not convex there exists a

monotone finite-valued function f : D → Z̄(A) which is not implementable. Alternatively,

the closure of every proper monotonicity domain of dimension at least 2 is convex.

The proof of Theorem 3 is by construction. We distinguish between domains of dimension

2 and domains of higher dimensions. The proof for k = 2 is given in Section 3.1 and the

proof for k ≥ 3 is given in Section 3.2. The reason for distinguishing between the dimensions

is subtle and will be explained below. We begin with a sketch the proof of Theorem 3 for

domains of dimension k = 2:

1. First we construct a monotone function f which is not implementable on a domain

which is obtained by removing from R2 the relative interior of a triangle (see Figure

1a). The range of f contains exactly three outcomes, each obtained in a different

region U0, U1 and U2. Furthermore f violates the cyclic monotonicity condition with

every three valuations that each belongs to a different intersection of two of the regions

U0, U1, and U2. For example, v, w, z in Figure 1a as well as the three vertices of the

triangle violate cyclic monotonicity.

2. Next it is shown that if the domain D has a non-convex closure then there exist 3

valuations such that the relative interior of the convex hull generated by them contains

a ball which does not intersect D. Subsequently it is shown that the structure identified

in the first part can be embedded in D such that the triangle will be located in the

ball (see e.g. Figures 1b and 1c).

U0U1

U2

w

z
v

w

v

z

U0

U1

U2

v

w

zU0

U1

U2

Figure 1a. Figure 1b. Figure 1c.

Figure 1a depicts the “ideal” case, in which the domain is the entire space except a triangle.
In Figures 1b and 1c the triangle is embedded such that its interior does not intersect the
domain (the blue region), but the extensions (including the vertices) of the triangle’s edges
do.

For further intuition regarding our construction and why we distinguish between domains

of dimension 2 and domains of higher dimensions we use the following theorem which provides

a unique way (up to a constant) to assign a utility function (or prices) for a cyclically
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monotone function on a polygonally connected domain.11 This property is called revenue

equivalence (see also Myerson (1981)).

Theorem 4 (Derived from (Rockafellar, 1970)) Let f be an allocation rule on a do-

main D. f is cyclically monotone on D if and only if there exists a real valued function U

on D such that12

U(v2)− U(v1) ≥ 〈f(v1), v2 − v1〉, ∀v1, v2 ∈ D. (4)

Let [w, v] ⊆ D. Every function U satisfying (4) satisfies:

U(v)− U(w) =

∫ 1

0

φ(t)dt, (5)

where

φ(t) = 〈f(w + t(v − w)), v − w〉.13 (6)

Consequently, if D is polygonally connected, any two functions satisfying (4) differ by a

constant.

Suppose f is defined on a polygonally connected domain D. By Theorem 4, had f been

cyclically monotone one can define a utility function U by choosing a single valuation v,

fixing U(v), and for any valuation w, U(w) is defined by just taking the integral of f over

some polygonal path from v to w. Hence, if one can provide a pair of valuations v and w

and two different polygonal paths from v to w in the domain such that the integral of f over

these paths are not equal, or alternatively the integral of f over the polygon that is formed

by the two paths is not zero, then f is not cyclically monotone. In the proof for domains of

dimension k = 2 we essentially constructed a monotone function f such that its integral over

a polygon (the triangle) in the domain is not zero. We next explain why such an approach

may fail in higher dimensions.

To construct a monotone function f which is not implementable it is useful to first identify

polygons for which the above process cannot work, i.e. the integral of f over the polygon must

be 0. First any polygon for which its convex hull belongs to D can be excluded, since one can

consider the domain to be exactly the convex hull of the polygon. Furthermore any polygon

that can be contracted through the domain to a point on the domain can be excluded (and

in particular if the domain is simply connected14 no polygon which is defined on the domain

11A domain D is called polygonally connected if for every two values v, w ∈ D there is a polygonal path
in D from v to w.

12U(v) can be interpreted as the utility function of the agent when her valuation is v.
13Note that if f is monotone, φ is necessarily non-decreasing and therefore it is in particular Riemann

integrable.
14In a simply connected domain every polygon can be contracted to a point.
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can be chosen): to see this, suppose for example that the polygons Γ1 =< v1, . . . , v5, v1 >,

Γ2 =< w5, . . . w1, w5 > and the triangles (including their interiors) ∆1, . . . ,∆10 in Figure 2

are contained in D. Since f is monotone on D it is monotone on each ∆i, and therefore it

v1 

v2 

v5 

v4 

v3 

w1 

w2 

w3 

w4 

w5 

Δ1 

Δ2 

Δ3 

Δ4 

Δ5 

Δ6 Δ7 

Δ8 

Δ9 

Δ10 

Figure 2.

is cyclically monotone on each ∆i (by convexity). Thus the integral of f on the boundary

on each triangle ∆i is 0. This implies that the integral of f on Γ1 equals the integral of f

on Γ2 (by adding to the integral of f on Γ1 the integrals of f over all triangles ∆1, . . . ,∆10

in the directions as in Figure 2). If Γ2 can be further contracted in this way to a point then

we obtain that integral of f over Γ1 is 0.

The proof for domain D with dimension k ≥ 3 has a similar idea; first it is shown how

to create a monotone function over the domain Rk excluding the relative interior of convex

polytope15(here the polytope will be a k dimensional triangular prism). Then we show how

to embed the construction in any domain with a non-convex closure of dimension k.

However, since the domain we use in the first step for k ≥ 3 is simply connected we

use a slightly different approach (than for k = 2) in constructing the function. First note

that implementability of a function implies that for every two valuations v, w such that

f(v) = f(w) the price in v and w must be the same. Thus for such v and w even if the entire

segment between (v, w) is not included in the domain one can still calculate U(w) given the

utility U(v). This fact allows to deal also with polygons that part of them is not defined on

the domain. This circumvents the contraction problem, i.e. a polygon that part of it is not

defined on the domain cannot be contracted through the domain to a point.16.

15A convex polytope is a convex hull of a finite set of points
16Another way to see that the direct extension of the first step of k = 2 does not work for k = 3 is

the following; we wish to construct monotone function on the faces of a polytope with vertices, v0, v1, v2
and v4 (i.e., a tetrahedron), which violates cyclic monotonicity on the vertices. Note that f is cyclically
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The following lemma will be useful in our proof; it enables us to embed the constructions

in various domains. The first part of the lemma provides that a proper monotonicity domain

can be equivalently defined using functions that do not output necessarily sub-probability

vectors, i.e. by replacing f : D → Z̄(A) with f : D → RA. The second part asserts that

monotonicity and cyclic monotonicity are invariant under rotations and dilations. Hence

when assessing whether a set D ⊆ RA is a proper monotonicity domain, we can choose the

coordinates in any convenient way. The proof is given in the Appendix.

Lemma 5 1. Let D ⊆ RA. If there exists a monotone finite-valued function f : D → RA

which is not cyclically monotone then there also exists a function f̃ : D → Z̄(A) with

the same properties.

2. A domain D ⊆ RA is a proper monotonicity domain if and only if L(D) is a proper

monotonicity domain, where L(D) is a rotation, affine shift or contraction of D.

3.1 Domains of Dimension k = 2

In this section we prove Theorem 3 for domains of dimension k = 2. We begin by showing

that if D is the plane R2 excluding an interior of a triangle one can define a monotone

finite-valued function on D which is not cyclically monotone.

3.1.1 Preparations: the plane excluding a triangle

A set L = {v, w, z} is called affine independent if its dimension is 2. The convex hull of an

affine independent set L = {v, w, z} is a simplex (triangle) denoted by ∆(L) and its relative

interior is denoted by ∆0(L).

Let α > 0, β > 0 be any non-negative reals and let

S = {(0, 0), (1, 0), (
1

1 + αβ
,

α

1 + αβ
)}. (7)

Note that S is affine independent. The complement of ∆0(S) is the union of the following

regions (see Figure 3):

U0 = {v ∈ R2 : v1 ≥ 1− βv2 and v2 ≥ 0},

monotone on every face of the polytope since each one of the faces is convex. Therefore, for every three
vertices vi,vj and vk there exists a real-valued function Ui,j,k satisfying (4) on the convex hull of vi, vj and
vk. Note that one can shift U0,1,2 and U1,2,3 so that U0,1,2(v1) = U1,2,3(v1) = U0,1,3(v1). By (5) it must be
that U0,1,2(v2) = U1,2,3(v2). Note that the function U : {v0, v1, v2, v3} → R defined by U(vi) = U0,1,3(vi) for
i = 0, 1, 3 and U(v2) = U1,2,3(v2) satisfies (4) and therefore f is cyclically monotone on the vertices of the
polytope D.
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U1 = {v ∈ R2 : v1 ≤ 1− βv2 and v2 ≥ αv1},

and

U2 = {v ∈ R2 : v2 ≤ αv1 and v2 ≤ 0}.

For every 0 ≤ i, j ≤ 2 let Ui,j = Ui ∩ Uj. In the next proposition we construct a monotone

finite-valued function on R2 \∆0(S). Furthermore this function will violate the cyclic mono-

tonicity condition for every three points v, w, z that each one is on an extension of a different

edge of the triangle (see Figure 3). Our parametrization will provide such a construction for

any triangle, as we will see later.

(1,0)

U0U1

U2

w

z

v
∆(S)

y=αx

x=1-βy

y=0(0,0)

Figure 3.

Proposition 6 There exists a monotone finite valued function f : R2 \∆0(S) → R2 which

is not cyclically monotone. Furthermore f can be chosen such that its range contains exactly

three vectors y0 = (0, 1), y1 = (− α
1+αβ

, 1
1+αβ

),y2 = (0, 0) and the following hold:

1. For i = 0, 1, 2, f(v) = yi for every v ∈ Ui \ Ui,i+1.17

2. For every three vectors v, w, z such that v ∈ U0,2, w ∈ U0,1 and z ∈ U1,2

〈v − w, f(v)〉+ 〈w − z, f(w)〉+ 〈z − v, f(z)〉 < 0. (8)

Proof: First we show that f is monotone. We need to show that 〈v−w, f(v)− f(w)〉 ≥ 0

for every v, w ∈ R2 \∆0(S). Three cases should be considered. Assume that f(v) = y0 and

f(w) = y1. Thus v ∈ U0 and w ∈ U1. Therefore

〈v − w, y0 − y1〉 = (v1 − w1)
α

αβ + 1
+ (v2 − w2)

αβ

αβ + 1
,

which is non-negative if and only if v1 − w1 + β(v2 − w2) ≥ 0 since α and β are positive.

v ∈ U0 implies that v1 + βv2 ≥ 1 and w ∈ U1 implies that w1 + βw2 ≤ 1. Therefore

v1 − w1 + β(v2 − w2) ≥ 0.

17As usual U2,3 = U2,0.
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Next assume that f(v) = y1 and f(w) = y2. Thus v ∈ U1 and w ∈ U2. Therefore

〈v − w, y1 − y2〉 = (v1 − w1)
−α

αβ + 1
+ (v2 − w2)

1

αβ + 1
,

which is non-negative if and only if −α(v1 − w1) + v2 − w2 ≥ 0. This inequality holds since

v ∈ U1 and w ∈ U2. Finally assume that f(v) = y2 and f(w) = y0. Thus v ∈ U2 and w ∈ U0.

Therefore

〈v − w, y2 − y0〉 = w2 − v2 ≥ 0,

where the last inequality follows since v ∈ U2 and w ∈ U0.

To complete the proof we show that part 2. holds, which in particular shows that f is

not cyclically monotone. Let v ∈ U0,2, w ∈ U0,1 and z ∈ U1,2 (see Figure 3). Then v = (a, 0)

for some a > 0, w = (1− βb, b) for some b > 0 and z = (−c,−αc) for some c > 0. Therefore

the left-hand side of (8) equals

−b− (1− βb+ c)
α

αβ + 1
+ (b+ αc)

1

αβ + 1
= − α

αβ + 1
< 0.�

3.1.2 Proof of for k = 2

Let D ⊆ RA be a set of dimension k = 2 whose closure cl(D) is non-convex. Observe that if

one can define a monotone function on a set D′ ⊇ D and find a finite sequence of valuations

v1, . . . , vk ∈ D which violates cyclic monotonicity then D is not a proper monotonicity

domain (the restriction f |D is monotone but not cyclically monotone). By Proposition 6

and Lemma 5, D is not a proper monotonicity domain if there exist affine independent

valuations, v, w, z, in D, such that the relative interior of the simplex generated by them

does not intersect D. For example, such valuations can be easily detected for the non-convex

ring at Figure 4a, by choosing the vertices shown in this figure. However, it is not true that

such valuations exist for every non-convex set, even if it is closed. For example, if D is the

Figure 4a. Figure 4b.

union of two disjoint closed disks shown in Figure 4b, then, as demonstrated in that figure,
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for every three valuations in D, not on the same line, the relative interior of the triangle

generated by them intersects D. Therefore we need a more delicate procedure, which uses

the following claim.

Claim 1 Let D be a set of dimension k = 2 whose closure is non-convex. There exist 3

affine independent valuations in D such that the relative interior of the simplex ∆ generated

by them contains a point, say d for which there exists η > 0 such that B(d, η)∩D = ∅, where

B(d, η) = {v ∈ ∆0| ||v − d|| < η}.

The proof of Claim 1 is postponed to the end of this proof. Without loss of generality we can

assume that D ⊆ R2. Let v, w, z be affine independent valuations in D such that there exist

d and η as in Claim 1. We choose η to be small enough such that B(d, η) ⊂ ∆0({v, w, z})
(see Figure 5). By rotating and shifting the plane we can assume without loss of generality

U0U1

U2

d

d1
v

w

z

d2

Figure 5: the red triangle is as in Figure 4b (v, w and z belong to the domain). A ball which
does not intersect the domain is located in the interior of the red triangle centered at d. A
triangle is located in the ball such that v,w and z are each on an extension of a different
edge of the triangle.

that d = (0, 0) and v = (x, 0) for some x > 0.18 Consider the line z + t(d − z − (ε, 0)) for

ε > 0. Let d1 and d2 be the points in which this line intersects the lines w+ t(d−w) and the

x-axis respectively. There exists a small enough ε such that d1 ∈ B(d, η) and d2 ∈ B(d, η)

since for ε = 0 all three lines intersect in d.

To finish the proof note that it is possible to rotate shift and scale the plane such that

S = {d, d1, d2} (see (7)) and v, w, z are vectors as in part two of Proposition 6. We can now

apply Proposition 6 to show that D is not a proper monotonicity domain.�

To complete the proof of the theorem it remains to prove Claim 1.

Proof of Claim 1: The proof is by contradiction. Assume that the claim does not hold.

Therefore, for every 3 affine independent valuations in D, the interior of the simplex ∆

generated by them is contained in cl(D). Therefore the simplex itself is contained in cl(D).

18Lemma 5 provides that any shift, rotation or scaling of D preserves the monotonicity domain property.
Hence these operations can be done alternatively on the space itself.
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As the dimension of D is 2, for every v0 6= v1 in D there exists v2 ∈ D such that v0, v1, v2

are affine independent, and therefore the simplex generated by these valuation is contained

in cl(D), and therefore the interval [v0, v1] ⊆ cl(D). Let w0, w1 be in cl(D). There exist

sequences vn0 , v
n
1 in D such that vni → wi, i = 0, 1. Therefore, every valuation in [w0, w1] is a

limit of valuations in cl(D), and hence it belongs to cl(D). This implies that cl(D) is convex

contradicting the assumption of the claim. Hence, Claim 1 holds, which completes the proof

of the theorem for k = 2. �

3.2 Domains of Dimension k ≥ 3

In this section we prove Theorem 3 for domains of dimension k ≥ 3. We need the following

definition. A domain D is called good, if for every v, w ∈ D the projection of D onto I = [v, w]

is dense in [v, w]. The proof of Theorem 3 for dimensions k ≥ 3 distinguishes between two

cases, namely whether D is a good domain or not. For domains which are not good we apply

the result for domains of dimension 2 by first projecting the domain to a plane, then finding

on the projection a monotone finite-valued function which is not cyclically monotone, and

finally extending the function to be monotone on the entire domain. For good domains the

proof uses a similar idea as for domains of dimension k = 2, but employs a more complicated

structure.

Note that if D is not a good domain then its closure is not convex. First we show:

Proposition 7 If domain D is not good then it is not a proper monotonicity domain.

Proof: Let D ⊆ RA be of dimension k where k ≥ 3. For any closed convex set Q let

ΠQ(D) denote the projection of D on Q. Since D is not good there exist v, w ∈ D and an

open interval (a, b) ⊆ [v, w] such that Π[v,w](D) ∩ (a, b) = ∅. Let z ∈ D be a vector in D

such that v, w, z are affine independent. Rotate and shift the space such that v, w, z are in

the XY plane and [v, w] lies on the X axis. There exists a < d < b and ε > 0 such that

B((d, 0), ε) ∩ΠXY (D) = ∅ where ΠXY is the projection to the XY plane. Therefore, by our

proof for dimension 2, ΠXY (D) is not a proper monotonicity domain. In particular there

exists a monotone finite-valued function f : ΠXY (D)→ R2 that is not cyclically monotone.

Let f̃ : D → RA be the function defined by f̃(x1, . . . , xA) = (f1(x1, x2), f2(x1, x2), 0, . . . , 0)

for every x ∈ D. Clearly f̃ is finite-valued, monotone and not cyclically monotone.�

By Proposition 7 it remains to deal only with good domains. These are studied in the

next two subsections. One example of a good domain which is not convex is the unit sphere

in R3.
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3.2.1 Preparations for the proof for good domains

Remark: throughout this section we will denote by vl the l-th coordinate of v and indices of

vectors will be denoted by superscripts.

Let k ≥ 2 be some integer. Let Sk be the following hyperplane in Rk+1:

Sk = {v ∈ Rk+1 :
k∑
i=1

vi = 0}. (9)

For every α > 0, ε1, ε2 > 0, and δ > 0, and i = 1, . . . , k we define the following regions in

Sk:

Uk
i (ε1, α, δ) =

{
v ∈ Sk : vk+1 ≥ α, vi =

k
max
j=1

vj, vk+1 ≥ α +
1− δ − vi

ε1

}
,

Mk
i (α) =

{
v ∈ Sk : −α ≤ vk+1 ≤ α, vi =

k
max
j=1

vj ≥ 1

}
,

and

Dk
i (ε2, α) =

{
v ∈ Sk : vk+1 ≤ −α, vi =

k
max
j=1

vj, vk+1 ≤ −α−
(1− vi)
ε2

}
.

Let

P k
u (ε1, α, δ) =

{
v ∈ Sk : vk+1 ≥ α, for every i ≤ k vk+1 ≤ α +

(1− δ − vi)
ε1

}
and

P k
d (ε2, α) =

{
v ∈ Sk : vk+1 ≤ −α, for every i ≤ k vk+1 ≥ −α−

(1− vi)
ε2

}
.

Note that if v ∈ Pu or v ∈ Pd, then vi ≤ 1 for every i ≤ k. Finally, let

T (α) = {v ∈ Sk : for every i ≤ k vi < 1, and − α < vk+1 < α}. (10)

Figure 6 illustrates the hyperplane S2 and the regions defined above for k = 2.

The superscript k and the arguments ε1, ε2, α, δ will be dropped whenever these are

clear from the context. Let Ω = {U1, . . . , Uk,M1, . . . ,Mk, D1, . . . , Dk, Pd, Pu}, and let G =⋃
Q∈Ω Q. Observe that Sk = G ∪ T . For every set L we denote by ri(L) the relative interior

of L with respect to Sk. In the following proposition we show that G is not a proper

monotonicity domain. Let u,w be the peaks of Pu and Pd respectively as illustrated in

Figure 6. For any i, 1 ≤ i ≤ k, we show how to construct a monotone function on G such

that for every two points c1 ∈ Ui ∩Mi and c2 ∈ Mi ∩ Di the sequence of points u,w, c1, c2

(see Figure 6) violates the cyclic monotonicity condition (3). This construction will be a key

tool in our main proof.
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Figure 6.

Proposition 8 Let α, ε1, ε2, δ be positive reals such that 2αε1 > δ. There exists a monotone

finite-valued function f : G → Rk+1, which is not cyclically monotone. Moreover f can be

chosen such that its range contains exactly 3k+1 distinct vectors yU1 , . . . , yUk , yM1 , . . . , yMk ,

yD1 , . . . , yDk , yP and such that for some fixed i, 1 ≤ i ≤ k the following hold:

1. For every set Q ∈ Ω, f(v) = yQ for all v ∈ ri(Q) where yPu = yPd = yP .19

2. f(v) = yUi for all v ∈ Ui \Mi, f(v) = yMi for all v ∈ Mi \ Di, f(v) = yDi for all

v ∈ Di \ Pd and f(v) = yP for all v ∈ Pd.

3. For every v ∈ G other than in 1. and 2., let f(v) = yQ for an arbitrary Q in which

v ∈ Q.

4. For every two distinct vectors c1 and c2 in which c1 ∈ Ui ∩Mi and c2 ∈Mi ∩Di,

〈w − u, f(w)〉+ 〈u− c1, f(u)〉+ 〈c1 − c2, f(c1)〉+ 〈c2 − w, f(c2)〉 < 0. (11)

where w = (0, . . . , 0,−α− 1
ε2

) and u = (0, . . . , 0, α + 1−δ
ε1

).

The proof of Proposition 8 is straightforward and is given in the Appendix. By Lemma 5

and Proposition 8 we obtain:

Corollary 9 For any α, ε1, ε2, δ such that 2αε1 > δ, G is not a proper monotonicity domain.

19Since all the sets in Ω are defined with equalities we first define the function on the interior of every set
in Ω, and then break ties on the boundaries.
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3.2.2 Proof of Theorem 3 for good domains with k ≥ 3

Proposition 10 Let D be a good domain with dim(D) = k ≥ 3 with a non-convex closure.

Then D is not a proper monotonicity domain.

The technique of this proof resembles the technique of the proof for k = 2, as we embed

the structure in the previous section in a way that allows us to apply Proposition 8. In

particular we show that for any good domain D there exist parameters α, ε1, ε2 and δ as in

Proposition 8 such that the set T and the sets in Ω (see Section 3.2.1) can be embedded in

the space so that T is in the relative interior of ConvexHull(D) \D (in the proof of k = 2

we located a triangle to be in the relative interior). The peaks of the simplexes w ∈ Pd and

u ∈ Pu can both be located in D, and there exist c1 and c2 as in Proposition 8 that also

belong to D. See Figure 7 for an illustration of this construction when D is a sphere (the

colored regions in Figure 7 represent Pu and Pd).

Proof of Proposition 10:

Since cl(D) is not convex there exist w, u ∈ D, z ∈ I := [w, u] and r > 0 such that

B(z, r) ∩ cl(D) = ∅, where B(z, r) = {v ∈ Rk : ||v − z|| < r}. We can assume without loss

of generality that D is embedded in Rk+1. Rotate the space so that the positive xk+1 axis is

from w to u. All other coordinates are parameterized by x1, x2, . . . , xk such that
∑n

i=1 xi = 0.

Let Iz = Iz(r1) be the interval of length r1 > 0 centered in z on I. There exists r1 > 0

such that for every a = (a1, . . . , ak, ak+1) with ak+1 ∈ Iz(r1) and ai ≤ r1 for every i ≤ k,

a /∈ cl(D). We scale D by 1
r1

. Thus, if ak+1 ∈ Iz and ai ≤ 1 for every i ≤ k then a /∈ cl(D).

Let a1, a2, . . . , ak+1 be k+ 1 equally spaced vectors in Iz, i.e. there exists d > 0 such that

for every i, 1 ≤ i ≤ k, ai+1
k+1 − aik+1 = d.

zu w

x4=-®x4=®

T

D - sphere
c1 c2

Figure 7.

Let Πwu be the projection operator on the interval I = [w, u]. Since D is a good set

there exist k + 1 distinct vectors b1, . . . , bk, bk+1 ∈ D such that Πwu(b
i) ∈ (ai−1, ai). For

16



any vector b = (b1, . . . , bk) we define indmax(b) to be some arbitrary index in arg maxki=1 bi.

That is bindmax(b) = maxki=1 bi. Note that there exist i, j ≤ k + 1 such that i < j and

indmax(bi) = indmax(bj). Define t := indmax(bi).

Let c = Πwu(bj)k+1+Πwu(bi)k+1

2
. We now shift the set so that c moves to (0, 0, . . . , 0).

Therefore Πwu(b
j) = −Πwu(b

i). In particular there exists α > 0 such that Πwu(b
j) =

(0, . . . , 0, α) and Πwu(b
i) = (0, . . . , 0,−α). We obtained that

w = (0, . . . , 0,−wk+1), u = (0, . . . , 0, uk+1), bi = (., . . . ,−α), bj = (., . . . , α) where wk+1, uk+1 > α.

Define ε1,ε2 and δ as follows:

ε2 =
1

wk+1 − α
; δ < min

(
α

uk+1 − α
,
1

2

)
; ε1 =

1− δ
uk+1 − α

.

Therefore

ε1 >
1

2(uk+1 − α)
; 2αε1 >

α

uk+1 − α
> δ.

Recall that T (α) is the k dimensional prism (see (10)). Therefore T (α) ∩ D = ∅. We

can now apply Proposition 8 with i = t, where w, u are as in part 4 of the proposition and

c1 = bj, c2 = bi. This implies that D is not a proper monotonicity domain.�

4 Monotonicity Domains - Characterization

In this section we complete our characterization of monotonicity domains.

Recall that a domain D is a monotonicity domain if every monotone finite-valued al-

location rule is also cyclically monotone. Note that every proper monotonicity domain is

a monotonicity domain. We characterize monotonicity domains via proper monotonicity

domains.

Let HA = {v ∈ RA :
∑

a∈A va = 0} be the hyperplane which is orthogonal to the vector

(1, . . . , 1) ∈ RA. Denote by Π : RA → HA the projection onto the hyperplane HA.

Theorem 11 Let D ⊆ RA. D is a monotonicity domain if and only if Π(D) is a proper

monotonicity domain.
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Proof: We first prove that if D is a monotonicity domain then Π(D) is a proper mono-

tonicity domain. Assume for contradiction that Π(D) is not a proper monotonicity domain,

i.e. there exists a function f 0 : Π(D) → Z̄(A) which is monotone but not cyclically mono-

tone. Let f 1 be an allocation rule obtained from f 0 by adding an appropriate multiple of

(1, . . . , 1) to each value of f 0:

f 1(v) := f 0(v) +
1−

∑
a∈A f

0
a (v)

|A|
(1, . . . , 1).

Let f 2 be the natural extension of f 1 to D. That is f 2(v) = f 1(Π(v)) for every v ∈ D.

Thus f 2 is also a finite-valued allocation rule. We claim that f 2 is monotone but not cyclically

monotone. To see this it is enough to show that for any v, w, z ∈ D, 〈v, f 2(w) − f 2(z)〉 =

〈Π(v), f 0(Π(w))− f 0(Π(z))〉. Let v, w, z ∈ D.

〈v, f 2(w)− f 2(z)〉 = 〈Π(v), f 1(Π(w))− f 1(Π(z))〉+ 〈v − Π(v), f 1(Π(w))− f 1(Π(z))〉.

Since f 1(Π(w)) − f 1(Π(z)) ∈ HA, we have that 〈v − Π(v), f 1(Π(w)) − f 1(Π(z))〉 = 0.

Therefore,

〈v, f 2(w)− f 2(z)〉 = 〈Π(v), f 0(Π(w))− f 0(Π(z))〉+ 〈Π(v), c(1, . . . , 1)〉,

where c is some real number. Since 〈Π(v), c(1, . . . , 1)〉 = 0 we are done.

We proceed to prove the other direction. Assume Π(D) is a proper monotonicity domain

and suppose that D is not a monotonicity domain, i.e. there exists an allocation rule f 0 on

D that is monotone but not cyclically monotone. Let v1, . . . , vk be a shortest sequence of

valuations which violates the cyclic monotonicity condition:

k∑
i=1

〈vi, f 0(vi)− f 0(vi−1)〉 < 0. (12)

We have that (12)=

k∑
i=1

〈Π(vi), f
0(vi)−f 0(vi−1)〉+

k∑
i=1

〈vi−Π(vi), f
0(vi)−f 0(vi−1)〉 =

k∑
i=1

〈Π(vi)−Π(vi+1), f 0(vi)〉,

(13)

where the second equality follows since vi − Π(vi) is orthogonal to f 0(vi)− f 0(vi−1).

Claim 2 For any i 6= j, Π(vi) 6= Π(vj).

18



Proof: Suppose i < j and Π(vi) = Π(vj). Taking all indices modulo k we have∑k
l=1〈Π(vl)− Π(vl+1), f 0(vl)〉 =

〈Π(vi)− Π(vi+1), f 0(vi)〉+ · · ·+ 〈Π(vj−1)− Π(vj), f
0(vj−1)〉+

〈Π(vj)− Π(vj+1), f 0(vj)〉+ · · ·+ 〈Π(vi−1)− Π(vi), f
0(vi−1)〉 =

〈Π(vi)− Π(vi+1), f 0(vi)〉+ · · ·+ 〈Π(vj−1)− Π(vi), f
0(vj−1)〉+ (14)

〈Π(vj)− Π(vj+1), f 0(vj)〉+ · · ·+ 〈Π(vi−1)− Π(vj), f
0(vi−1)〉] < 0. (15)

Clearly at least one of (14) or (15) is negative contradicting the minimality of k. �

Next we say that f 1 on Π(D) is a projection of f 0 if for any v ∈ Π(D), f 1(v) ∈ f 0(Π−1(v)).

Claim 3 Any projection f 1 of f 0 is monotone.

Proof: For any v, w ∈ Π(D) there is ṽ, w̃ ∈ D such that Π(ṽ) = v, Π(w̃) = w, f 0(ṽ) = f 1(v)

and f 0(w̃) = f 1(w). We have

〈v − w, f 1(v)− f 1(w)〉 = 〈v − w, f 0(ṽ)− f 0(w̃)〉 = 〈ṽ − w̃, f 0(ṽ)− f 0(w̃)〉.�

Finally, since by Claim 2 all the Π(vi)’s are distinct we can select a projection f 1 of f 0

such that f 1(Π(vi)) = f 0(vi) for all i = 1, . . . , k. Therefore f 1 is monotone but not cyclically

monotone:

k∑
i=1

〈Π(vi), f
1(Π(vi))− f 1(Π(vi−1))〉 =

k∑
i=1

〈vi, f 1(Π(vi))− f 1(Π(vi−1))〉 =

k∑
i=1

〈vi, f 0(vi)− f 0(vi−1)〉 < 0.

This contradicts that Π(D) is a proper monotonicity domain. �

5 Appendix

5.1 Proof of Lemma 5

We begin with the first part. Let D be a domain and let f : D → RA be a monotone

finite-valued function which is not cyclically monotone. Let y1, . . . , ym be the distinct values

of f . There exist α > 0 and y ∈ RA such that for every i = 1, . . . ,m, ỹi = α(yi + y) ∈ Z̄(A).

Let f̃ be the function defined by f̃(v) = ỹi if and only if f(v) = yi. Thus for every v, w ∈ D,

〈v, f̃(v)− f̃(w)〉 = α〈v, f(v)− f(w)〉. (16)
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Therefore all inner products in (16) are multiplied by the same positive factor, implying that

f̃ is monotone and not cyclically monotone.

To prove the second part we first notice that by the first part we do not need to restrict

ourselves to functions that output only sub-probability vectors. Assume that D is not a

proper monotonicity domain and let f : D → RA be a monotone function which is not

cyclically monotone. We show that there exits a monotone function f̃ : L(D) → RA which

is not cyclically monotone.

Suppose L(D) is a rotation. Thus, there exists a unitary matrix U such that for every

y ∈ L(D) there exists x ∈ D such that Ux = y. For all x ∈ L(D) let f̃(x) = Uf(U−1x). For

every three points x, y, z ∈ D, we have

〈x− y, f(z)〉 = 〈Ux− Uy, Uf(z)〉 = 〈Ux− Uy, f̃(Uz)〉

as U is unitary. Since all the monotonicity and cyclic monotonicity constraints are defined

via inner products, f̃ is monotone but not cyclic monotone over L(D). Suppose now that

L(D) is an affine shift by some fixed vector ~t. For every x ∈ L(D), let f̃(x) = f(x − ~t).
Therefore 〈x−y, f(z)〉 = 〈(x−~t)−(y−~t), f(z−~t)〉 which implies the result. Finally, suppose

L(D) is a contraction by a constant c > 0. For every x ∈ L(D) let f̃(x) = f(cx). In this

case, all the inner products are multiplied by c > 0, and the result follows.�

5.2 Proof of Proposition 8

In order to define the range of f we make use of the following notation. Let ej(γ) ∈ Rk+1

denote the sum ej + (0, . . . , 0, γ) where both vectors are in Rk+1. The range of f is defined

as follows:

yQ =


ej(ε1) Q = Uj,

ej Q = Mj,

ej(−ε2) Q = Dj,

0̄ Q = Pd or Q = Pu.

(17)

We first show that f is not cyclically monotone. To see this it is enough to verify that (11)

holds. Let w, v, c1, c2 be as in part 4 of the proposition. Since f(w) = 0̄, 〈w − u, f(w)〉 = 0.

Since c1 ∈ Ui ∩ Mi it has the form c1 = (c1
1, . . . , c

1
k, α). Similarly c2 = (c2

1, . . . , c
2
k,−α).

Therefore

〈u− c1, f(u)〉 = −c1
i +

1− δ
ε1

· ε1 = −c1
i + 1− δ,

〈c1 − c2, f(c1)〉 = c1
i − c2

i , and 〈c2 − w, f(c2)〉 = c2
i +

1

ε2

· (−ε2) = c2
i − 1.

Summing up all the terms we obtain that (11)=−δ < 0.
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To complete the proof we need to show that f is monotone onG. Let v = (v1, . . . , vk+1), w =

(w1, . . . , wk+1) be any two vectors in G. Let e0 denote the zero vector. We distinguish be-

tween the following cases (i will be used now as an arbitrary index):

1. f(v) = yUi and f(w) = yUj . Thus, v ∈ Ui, w ∈ Uj. Therefore

〈v−w, f(v)−f(w)〉 = 〈v−w, ei−ej〉 = (vi−wi)+(vj−wj) = (vi−vj)+(wj−wi) ≥ 0

where the last inequality follows since vi ≥ vj and wj ≥ wi.

2. f(v) = yUi and f(w) = yMi . Thus, v ∈ Ui, w ∈Mi, implying that

〈v − w, f(v)− f(w)〉 = 〈v − w, e0(ε1)〉 = (vk+1 − wk+1) · ε1 ≥ 0,

since vk+1 ≥ α,wk+1 ≤ α, and ε1 > 0.

3. f(v) = yUi and f(w) = yMj for i 6= j. Thus v ∈ Ui, w ∈Mj. Therefore

〈v−w, f(v)−f(w)〉 = 〈v−w, ei(ε1)−ej〉 = (vi−wi)+(vj−wj)+(vk+1−wk+1) ·ε1 ≥ 0

where the last inequality follows since vi ≥ wi, vj ≥ wj and (vk+1 − wk+1)ε1 ≥ 0.

4. f(v) = yUi and f(w) = yDi . Thus v ∈ Ui, w ∈ Di. Therefore

〈v − w, f(v)− f(w)〉 = 〈v − w, e0(ε1)− e0(−ε2)〉 = (vk+1 − wk+1) · (ε1 + ε2) ≥ 0

where the last inequality follows since vk+1 ≥ α,wk+1 ≤ −α, and ε1, ε2 > 0.

5. f(v) = yUi and f(w) = yDj . x ∈ Ui, w ∈ Dj. Then

〈v−w, f(v)−f(w)〉 = 〈v−w, ei(ε1)−ej(−ε2)〉 = (vi−wi)+(vj−wj)+(vk+1−wk+1)·(ε1+ε2) ≥ 0

where the last inequality follows since vi ≥ wi, vj ≥ wj and vk+1 ≥ wk+1.

6. f(v) = yMi and f(w) = yMj . Thus x ∈Mi, y ∈Mj. Therefore

〈v−w, f(v)−f(w)〉 = 〈v−w, ei−ej〉 = (vi−wi)+(vj−wj) = (vi−vj)+(wj−wi) ≥ 0

where the last inequality follows since vi ≥ vj, wj ≥ wi.

7. f(v) = yUi and f(w) = yP . Thus v ∈ Ui, w ∈ Pu ∪ Pd. Then

〈v − w, f(v)− f(w)〉 = 〈v − w, ei(ε1)〉 = (vi − wi) + ε1 · (vk+1 − wk+1) ≥

vi − wi + (α · ε1 + 1− δ − vi)− ε1wk+1. (18)
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where the last inequality follows since vk+1 ≥ α + 1−δ−vi

ε1
. If w ∈ Pu then wk+1 ≤

α + 1−δ−wi

ε1
, and therefore

(18) ≥ vi − wi + (α · ε1 + 1− δ − vi)− (α · ε1 + 1− δ − wi) = 0.

If w ∈ Pd then wk+1 ≤ −α and wi ≤ 1. Therefore, since 2αε1 ≥ δ,

(18) ≥ vi − wi + (α · ε1 + 1− δ − vi)− (−α · ε1) = 1− wi − δ + 2αε1 ≥ 0.

8. f(v) = yMi and f(w) = yP . Thus v ∈Mi, and w ∈ Pu ∪ Pd. Therefore

〈v − w, f(v)− f(w)〉 = 〈v − w, ei〉 = vi − wi ≥ 0,

where the last inequality follows since vi ≥ 1, wi ≤ 1.

9. f(v) = yDi and f(w) = yP . Thus v ∈ Di, w ∈ Pu ∪ Pd. Then

〈v − w, f(v)− f(w)〉 = 〈v − w, ei(−ε2)〉 =

(vi − wi) + ε2 · (wk+1 − vk+1). (19)

If w ∈ Pu then wk+1 ≥ α > −α − 1−wi

ε2
, since wi ≤ 1. If w ∈ Pd, then by definition

wk+1 ≥ −α− 1−wi

ε2
. In either case, since v ∈ Di, vk+1 ≤ −α− 1−vi

ε2
. Therefore

(19) ≥ vi − wi + (α · ε2 + 1− vi)− (α · ε2 + 1− wi) = 0.

The other cases in which f(v) = yDi are very similar to those in which f(v) = yUi . In

fact it is easier for monotonicity to hold in these cases since Pd is a larger set than Pu. �
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