Branching Programs:
Avoiding Barriers

Stephen Cook

Barriers Workshop
Princeton
August, 2009

Joint work with

Mark Braverman

Pierre McKenzie

Rahul Santhanam
Dustin Wehr

Complexity Classes

ACY%6) C NC! C L C NL C LogCFL
C ACl CNC?2CPCNPCPH

As far as is known, AC9(6) cannot determine
whether a majority of its input bits are ones.

Yet it is open whether AC9(6) = PH.
Here we introduce the

Tree Evaluation Problem (TEP)
We show TEP is in LogDCFL.

We are trying to prove TEP ¢ L
(and TEP ¢ NL)

Tree Evaluation Problem
(Generalizes a problem in [Taitslin05])

)
®/ \®

@/ \@ @/ \@

Tree of height h = 3 with heap numbering

Th: Balanced d-ary tree of height h
DEFAULT: d =2

k] = {1,....k)

TEP(h, k) Applies to TS. Assume h,k > 2
Input:

v; € [k] for each leaf ¢

Function f; : [k] x [k] — [k] for each internal
node 1

(Thus every node 7 gets a value v; € [k])

Output: root value vy € [k]
Decision Problem: Does v =17

Claim: TEP(h, k) € LogDCFL

Space-efficient algorithms for TEP come
from pebbling (and depth-first search)

Deterministic algorithms come from

‘black’ pebbling. [Paterson/Hewitt70]

Rules:

e Place a pebble on any leaf.

e If both children of node ¢ are pebbled, slide
one of them to the parent.

e Remove any pebble at any time.

Goal: Pebble the root using a minimum
number of pebbles.

Easy Theorem: T} requires exactly h pebbles.

O O
VRN VRN
/O O o O\
./ \. Q/ \O O/ \O ./ \‘

O ®
AN N
/'\ /.\ /O\ /O\
O O O O O O O O

Easy T heorem: T§ requires exactly h pebbles.

Proof:
Upper Bound: Induction on h.

Easy Theorem: T requires exactly h pebbles.

Proof.
Upper Bound: Induction on h.

Lower Bound: Every pebbling of T4 has a

Bottleneck Configuration: The pebble set
right after the first pebble move that blocks
all paths from root to leaf.

This pebble move must be on a leaf ¢
The path p from root to ¢ is pebble-free.

For each node 7 # ¢ on p there must be a
distinct pebble blocking some path from 2 to a
leaf.

These h — 1 pebbles together with the pebble
on ¢ form the Bottleneck.

O O
/4@ O @ Q\
./ \‘ O/ \O O/ \O ./ \‘

Y O o
Q/ \Q O/ \Q

5 od o d od b

Recall: T4 requires exactly h pebbles.
Corollary: TEP(h,k) € DSPACE(hlogk)
This is NOT a log space algorithm.

Input size n = (2" — 1)k?log k
logn = ©(h + 10g k)

k-way Branching Programs

A k-way BP B solving TEP(h, k) is a directed
multigraph with nodes called states. Each non-
final state q is labeled either with a leaf node 1,
with k£ outedges from q labeled 1, ...,k indicat-
ing the possible values for v;, or labeled with
(i,a,b) where 7 is an internal node and a,b € [k]
and the outedges are labeled with the possible
values for f;(a,b). Each final state has a label
from [k] indicating the output v1.

Size(B) is the number of states in B.

A Turing machine M solving TEP(h, k) in space
s(h,k) can be simulated by a family of BPs of
size 20(s(hk)) (the number of possible config-
urations of M).

Size(h, k) is the number of states in the
smallest deterministic BP solving TEP(h, k).

Sizey (k) = Size(h, k) for fixed h.

Lemma Sizey, (k) = O(k")

Proof: h pebbles suffice to pebble T%,

and for fixed h, the number of steps in the
pebbling of T} is constant.

This is the best upper bound known for the
order of Sizey (k).

(We offer a prize to anyone who can beat it:
Later)

Lemma: A lower bound of Sizey, (k) = Q (k™M)
for some unbounded function r(h) implies
L # LogDCFL.

Recall best known upper bound:
Sizen (k) = O(kM)

Best known lower bounds:
Sizeyn (k) = Q(k3) for each h > 3.
(Tight bounds are known for h =2 and h = 3)

h =2: Sizes(k) = Q(k?)

This is obvious because each state of the BP
can only make one query of the form (4,x,vy),
and there are k2 possible values for (z,v).

h = 3: Sizez(k) = Q(k3)

This is not obvious, because the number of
input variables is only O(k2).

Proof I: Use NecCiporuk’'s method

Proof II: Use the “state sequence” method.

NecCiporuk’'s method counts the number of BPs
on s states and compares this with the number
of functions obtainable by various restrictions
of TEP, (k). This method cannot beat Q2(n?)
states, and so cannot show TEP ¢ L.

10

)
®/ \®
@/ \@ @/ \@

Theorem: Sizes(k) > k3

Proof: ('“State Sequence” method)

For r,s € [k] let E™% be the set of inputs I s.t.
o fi(z,y) = (x4 y) mod k

o fi(x,y) = f4(z,y) =0 for all (z,y) # (r,s)

ovﬁzvézr and fvé:vgzs

Thus |E™®| = k? because each I € E™* deter-

mined by vh, vi.

Let '™° be the set of states which query either

fo(r,s) or f3(r,s). It suffices to show
(*) Ir™s| >k for all r,s € [k].

Proof of (*¥): (y!,v]) determines the output of
C(I) (the computation on input I), where 4! is
the last state of C(1) in I'™%, and 7 is the node
queried by ~!.

11

Thrifty Branching Programs

A deterministic BP solving TEP, (k) is thrifty if
for every query f;(x,y) (for every input), (z,vy)
are the values of the children of node 1.

Thrifty BPs can implement black pebbling, and
hence solve TEP,(k) with O(k") states. It
turns out that this is also a lower bound.

Theorem: Thrifty deterministic BPs solving
TEP; (k) have Q(k") states.

The proof is nontrivial. (Later)

Thus any BP beating the O(k") upper bound
must make queries f;(x,y) which are irrelevant
to the value v; of the node 1.

Thrifty Hypothesis: Thrifty BPs are optimal
among deterministic BPs solving TEP, (k).

(Not quite true for solving the decision version
of TEP)

12

Theorem: Thrifty deterministic BPs solving
TEP, (k) have Q(k") states.

Proof Idea: Suppose B is a deterministic BP
which solves TEPy (k). We will associate with
the computation Compg(l) for each input I a
black pebbling sequence for the tree T = T%.

Trouble: The pebbling can be different for
each input 1.

We will show how to find a “bottleneck con-
figuration” in the computation, similar to the
one that comes out of any black pebbling of
the tree T%.

Let vil be the value of node ¢ for input I. We
say state q queries v if it queries f;(vh;,v5, 1),
Note that every node of 7' must be queried
at least once during the computation, and for
each time that a node is queried there must
be earlier times at which each of its children is
queried.
13

For each input I and each node ¢ in T we asso-
ciate a critical state ¢! which queries v! during
the computation of B on input I as follows.
Let ¢f be the first state which queries the root
vi. In general, for each node i let g4, (resp.

q§i+l) be tr;e last state before q{ that queries
vy, (resp. vy, 4 1).

Note that for each path from root to leaf in
T the critical states are reached at decreasing
times.

Pebbling Sequence Associated with input
I: For each critical state q{, slide one of the
pebbles on the children of ¢ (both children must
be pebbled) to node 3.

This is a valid black pebbling of T', because the
critical states for the children of each node 1
precede the critical state of 1.

14

The bottleneck state qg of the computation is
the first critical state after which all paths from
root to leaf are blocked by pebbles in the asso-
Ciated pebbling sequence. The pebbled node b
is the bottleneck leaf. The bottleneck path is
the path from the root to b. The bottleneck
configuration C! is the set of pebbled nodes
right after ¢!. Thus

| > h

Define the supercritical state qg of the compu-
tation to be the critical state at which the par-
ent ¢ of the bottleneck leaf b is queried. Thus
c iIs on the bottleneck path, and all bottleneck
nodes are pebbled before ¢!.

15

We want a lower bound on the number of
distinct supercritical states of B as I ranges
over all inputs. Intuitively a supercritical state
“knows” the values of all the pebbled nodes
in the bottleneck configuration C!, since (by
definition of critical state) the computation
queries each parent of a bottleneck node be-
fore it queries the node again.

But we must account for the possibility that
the computation might gain information about
these values by making queries to other nodes.
We do this by partitioning the inputs into blocks
such that the inputs in each block have the
same node values for all nodes other than those
in the bottleneck configuration C!.

16

Now we restrict attention to the set E of in-
puts I such that the root function f; is iden-
tically O, and the functions associated with all
other internal nodes are 0 except possibly when
evaluated at the values of their children. Thus
each input I in E is determined by the values
vh vi, .. .vl of all nodes in T other than the
root, so

E| = k"1 (1)

where n = 2" — 1 is the number of nodes in T.

Let Eq be the set of all inputs I € E such that
|C!| = h. Let E> = E\ E1.

The theorem follows from

Claim: The number of distinct supercritical
states is at least

(1) (|E1l/|EDK" for I € By

(2) en(|E2l/|E)EMTE for I € B

17

Proof of (1): The number of distinct super-
critical states is at least (|E1|/|E|)k", for inputs
in £1. (Here |C!| =h.)

For I € F/1 all h nodes in the bottleneck con-
figuration C! are completely determined by the
supercritical node ¢(I). Namely C! consists of
the siblings of each node (except the root) on
the bottleneck path, together with the leaf b
of the path.

For each node j at level 2 (just above the
leaves) in T, let C(j) be the bottleneck set
of size h associated with the node 5 as above,
assuming j is supercritical. Let E{ be the set
of all inputs I in Eq whose supercritical node
c(I) = j. Thus the sets {E{} form a partition
of F41, and soO

B1] = |E] (2)
J

18

Let U be the set of nodes in T" other than the
root. By a counting argument, for each node
7 at level 2 there must be some assignment of
values V; to the the n—h—1 nodes in U—C(4)

such that there are at least |EY |/k” =1 inputs
I in E=7 whose nodes have the values V. Let

E{* be that set of inputs I. Thus
B > | B/ e (3)

and each [€ E{ IS uniquely determined by the
values of the h nodes in C(4).

Let Q] be the set of all states ¢q in B such that

qg= q for some I € EJ’ . Note that the sets Q;
and Q/ are disjoint for distinct 3,5’ since the
state q] queries node j.

FACT: [Q;| = |E{’*|. The Lemma follows,
since if) is the set of all states in B, then
by (1),(2), and (3) we have

Q1> >1Q)l = Y 1EY" = Y |By| /K
J J J
= |B1|/K" " = (1Bl /| BDE

19

The second part of the Claim:

Proof of (2): The number of distinct super-
critical states is at least ¢, (|Eo|/|EEM L, for
inputs I in Eo. (Here |C!|>h+1))

The proof is similar to (1), but this time we
partition E% according to the set S consisting
of the next h — 1 bottleneck nodes which are
determined after the children of the supercrit-
ical node are determined.

€, 1S the reciprocal of then number of such sets
S.

20

Nondeterministic Branching Programs

Black/White Pebbling: A white pebble can
be placed on any node at any time (represent-
ing a guess as to the value). The pebble can be
removed if the node is a leaf, or both children
have pebbles.

T4 can be B/W pebbled with [h/2]41 pebbles.
(This is optimal.)

Recall T} requires h pebbles to black pebble it.

21

Nondeterministic Branching Programs

Black/White Pebbling: A white pebble can
be placed on any node at any time (represent-
ing a guess as to the value). The pebble can be
removed if the node is a leaf, or both children
have pebbles.

T4 can be B/W pebbled with [h/2]41 pebbles.
(This is optimal.)

Recall T} requires h pebbles to black pebble it.

Nondeterministic BPs implement B/W pebbling,
so NSize,(k) = O(klh/21+1).

For h = 3 this gives O(k3) states, but best
lower bound is k22 states (via both NeCiporuk
and ‘state-sequence’ methods).

This led us to discover “fractional pebbling”.
TS can be B/W pebbled with 2.5 pebbles, so

NSizez(k) = ©(k2>).

22

Fractional Pebbling

Fractional pebbling is like B/W pebbling, ex-
cept now a node ¢ can have a pair (b(7),w(i))
of real values, where

0 < 0(4), w(i) b(i) +w(z) <1

If both children of node 7 have total pebble
value 1, then w(i) can be set to 0, and any
black fraction can be slid up from the children
to increase b(17).

The tree TS can be fractionally pebbled with
2.5 pebbles.

/\ /\

A NAN A

Theorem Thrifty nondeterministic BPs can
implement fractional pebbling to solve TEP (k).

23

Theorem Bounds on fractional pebbling.
#FRpebbles(T5) = 2.5

#FRpebbles(T5) = 3

h/2 — 1 < #FRpebbles(T}) < h/2 + 1

Theorem(Repeat) Thrifty nondeterministic BPs
can implement fractional pebbling.

Corollary NSizez(k) = ©(k2-2)
NSizeq(k) = O(k3)

N Size, (k) = O(kEM2+t1) h > 2

(All upper bounds use thrifty BPs)

Theorem ThriftyN Sizeq (k) = ©(k3)

Open Question: Can nondeterministic Thrifty
BPs beat fractional pebbling bound for h > 47

(Recall that black pebbling is optimal for
deterministic thrifty BPs.)

24

Previous Work
for BP size lower bounds for ‘explicit’
functions

Bor Razb Smo 93 Exp size Lower Bound for
Syntactic Read k BPs

Beame Saks Sun Vee 02 (Improving on Ajtai
99): EXxp size lower bound when time is re-
stricted to o(n\/log n/loglogn)

Gal Koucky McK 08: Exp size lower bound for
Incremental BPs

Neciporuk Barrier: n2/logn size lower bound
for unrestricted BPs.

25

Conclusion

Thrifty Hypothesis: Thrifty BPs are opti-
mal among deterministic k-way BPs solving
TEPy (k).

(i.e. Sizep(k) = Q(kM).)

In other words, the black pebbling method is

the most space-efficient deterministic method
for solving TEP, (k).

A proof implies L #= LogDCFL
(so NC! C NC?).

A disproof would involve a new space-efficient
algorithm and would also be interesting
(think superconcentrators).

Next Step: Prove or disprove Sizea (k) = Q (k%)

(Best known bound: Sizea(k) = Q(k3).)

Are there any Barriers??
26

$100 PRIZE!!!

We, the five authors listed below, offer a prize
of $100 US to the first person who, for some
height h > 4 and ¢ > 0O, proves the existence
of a family {By; k > 2} of deterministic k-way
branching programs such that By, solves FT4 (k)
and has O(k"—¢) states.

Mark Braverman, Stephen Cook, Pierre McKen-
zie, Rahul Santhanam, Dustin Wehr

NOTE: Pebbling gives an upper bound of O(k")
states.

FULL PAPER (45 pages) Available on my web
site.

27

